Possible roles of kainate receptors on GABAergic nerve terminals projecting to rat substantia nigra dopaminergic neurons.
نویسندگان
چکیده
GABAergic afferent inputs are thought to play an important role in the control of the firing pattern of substantia nigra pars compacta (SNc) dopaminergic neurons. We report here the actions of presynaptic kainite (KA) receptors in GABAergic transmission of rat SNc dopaminergic neurons. In mechanically dissociated rat SNc dopaminergic neurons attached with native presynaptic nerve terminals, GABAergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded by use of conventional whole cell patch recording mode. In the voltage-clamp condition, KA (3 microM) significantly increased GABAergic mIPSC frequency without affecting the current amplitude. This facilitatory effect of KA was not affected in the presence of 20 microM GYKI52466, a selective AMPA receptor antagonist, but was completely inhibited in the presence of 20 microM CNQX, an AMPA/KA receptor antagonist. Presynaptic KA receptors on GABAergic terminals were mainly permeable to Na+ but impermeable to Ca2+ because KA-induced facilitation of mIPSC frequency was completely suppressed in either Na+-free or Ca2+-free external solutions, and in the presence of 200 microM Cd2+, a general voltage-dependent Ca2+ channel blocker. In the slice preparation, KA increased GABAergic spontaneous mIPSC frequency, but significantly suppressed evoked IPSC (eIPSC) amplitude. However, this inhibitory action on eIPSCs was reversed by 10 microM CGP55845, a selective GABAB receptor antagonist, implicating the possible involvement of GABAB autoreceptors in KA-induced modulation of GABAergic transmission. Thus presynaptic KA receptors on GABAergic nerve terminals synapsing onto SNc neurons may play functional roles contributing the fine control of neuronal excitability and firing pattern of SNc.
منابع مشابه
GABA, Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons
Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...
متن کاملGABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons.
Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...
متن کاملInvolvement of nigral oxytocin in locomotor activity: A behavioral, immunohistochemical and lesion study in male rats
Oxytocin is involved in the control of different behaviors, from sexual behavior and food consumption to empathy, social and affective behaviors. An imbalance of central oxytocinergic neurotransmission has been also associated with different mental pathologies, from depression, anxiety and anorexia/bulimia to schizophrenia, autism and drug dependence. This study shows that oxytocin may also pla...
متن کاملMorphology and Synaptic Organization of Non-Dopaminergic Nigral Projections to the Medio Dorsal Thalamic Nucleus of the Rat, a Study by Anterograde Transport of PHA-L
Background: Mediodorsal (MD) thalamic nucleus, which is considered to take place between extra pyramidal and limbic feedback circuit, receives projective fibers from ventrolateral neurons of reticular part of substantia nigra (SNr). In order to better understand the influence and chemical reaction of these fibers upon MD nucleus, the morphology and synaptology of them were examined in the prese...
متن کاملGABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo.
Most in vivo electrophysiological studies of substantia nigra have used rats. With the recent proliferation of the use of mice for in vitro neurophysiological studies because of the availability of various genetically modified strains to identify the roles of various channels and proteins in neuronal function, it is crucial to obtain data on in vivo responses in mice to verify that the in vitro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 3 شماره
صفحات -
تاریخ انتشار 2003